Processing math: 100%

Chers finalistes, préparez-vous pour le grand jour avec nos contenus !

Des items de toutes les options taillés sur mesure pour que vous prépariez mieux vos épreuves

Start learning
Domaine de définition de la forme : f(x) = √(m&P(x))/√(n&Q(x))
Domaine Science Sous domaine Mathématiques
Section Scientifique Option Math-Physique
Discipline Mathématique Classe 6ème
Matériel didactique Latte Auteur SCHOOLAP.COM
Objectif opérationnel A la fin e de la leçon, l’élève sera capable de déterminer le domaine de définition de la forme f(x) = √(m&P(x))/√(n&Q(x)) à l’aide des indices en 5 minutes.
Réference Etude d’une fonction 6eped,pp 16-17
Activité initiale

a. Rappel

Déterminez le domaine de définition de la fonction défini par :

f(x)=5x33x2x+3x3+1

a. Rappel

X3+1 = (x+1)(x²-x+1) ≠ 0

X= -1           x²-x-1 = 0         ∆ = -3

Df : ] -∞, -1[U]-1, +∞[

b. Motivation

Soit f(x) =5x+24x²+4 combien d’indice y a-t-il ? et les quels ?

Il y a deux indices qui sont 5 et 4.

De quelle forme s’agit-elle ?

Il s’agit de la forme de domaine de définition de la forme :

f(x) = mP(x)nQ(x)

 

c. Annonce du sujet

Qu’allons-nous étudier aujourd’hui en math ?

c. Annonce du sujet

Aujourd’hui nous allons étudier le domaine de définition de définition de la forme.  mP(x)nQ(x)

Activité principale

Analyse

Comment peut-on déterminer le Df si on a deux indices ?

Analyse

Fonction irrationnelle de la forme f(x) = mP(x)nQ(x)

* Si m et n sont pairs

Df = {x ЄIR, P(x)≥ 0 et Q(x)˃ 0}.

*Si m est pair et n est impair

Df= {x ЄIR, P(x)≥0  et Q(x) ≠ 0}

*Si m impair et n est pair : Df= {x ЄIR, Q(x)˃0}

*Si m et n sont impairs : Df= {x ЄIR, Q(x) ≠ 0 }

Exemples :déterminez le Df de chacune des fonctions suivantes :

a. y= x1x6  

x-6 = 0

                            x= 6

posons P(x) = x-1

D1= [1, +∞[

D2= ]6, +∞[

D = [1,+∞[U]6,+∞[ = ] 6 , +∞[

b. y= x²5x+65x6

P(x) = x²-5x+6≥ 0

∆ = 25-24 = 1

=±1

= ± 1

x- 6 ≠ 0      D2= ]-∞,6[U]6,+∞[

D = D1U D2 = ]-∞,6[U]6,+∞[

 

Synthèse

Déterminez le domaine de définition des fonctions suivantes :

Y=5x²3x1,753x38

X3-8 ≠ 0

X3-23 ≠ 0

Y=96x3x²5x+6

Déterminez le domaine de définition de la fonction ci-dessous :

Y=3x²+4x+44x²8x+7

Q(x) ˃0

X²-8x+7˃0

∆ = 64-4(1).7

= 64-28

   = 36

=±36

= ±6

Df : ]-∞, 1[U]7,+∞[